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Remarks on solving the one-dimensional time-dependent
Schrödinger equation on the interval [0,∞]: the case of a
quantum bouncer

S T Dembínski and L Wolniewicz
Institute of Physics, Nicholas Copernicus University, ul. Grudziadzka 5, 87-100 Torun, Poland

Received 21 August 1995

Abstract. It is shown that the1D Hamiltonian, which is a sum of operators which generate
a finite nilpotent Lie algebra and depends explicitly on time existing closed form solutions of
the time-dependent Schrödinger equation, cannot fulfil in general boundary and normalization
conditions on a positive semi-axis. An explanation of the controversy surrounding the solutions
of the quantum bouncer model, which appeared recently in the literature, is given.

1. Introduction

Quantum theory of systems which are subjected to constraints has attracted far less interest
in the literature than the classical theory of such systems, the latter being in fact an inherent
part of any textbook on classical mechanics. There are of course quite well understood
reasons for such a state of affairs. Recently, however, when it became fashionable to
look for ‘finger prints’ of classical chaos in quantum physics, quantization of the simplest
possible classical nonlinear models attracted much interest. Among these models there are,
in particular, models of infinitely deep wells, gravitational bouncers, stadia of different
shapes and so on. Particles in these models are allowed to occupy only some restricted
volumes of space and this fact alone introduces nonlinearity to the equations of motion. In
order to have chaotic behaviour in such systems, boundaries of these volumes may also be
time dependent. This holonomic (time-dependent) type of constraint is a necessary condition
for the chaos to appear in one-dimensional models. To restrict motions of a quantum particle
to some domain� in the configurational space one assumes that the potential is infinite
at the boundaries and outside of�. This fact in turn implies vanishing of the state vector
(in the position representation ) on the boundary and outside�. In this way the infinite
potential, which is responsible for the constraints, is in practice in all further considerations
represented exclusively by the boundary conditions imposed on the state function. It will
be demonstrated and explained in this paper why, when trying to solve problems with time-
dependent boundary conditions, this fact may lead to confusion. An example from the very
recent literature will be quoted in this context.

We consider here the one-dimensional gravitational bouncer, i.e. a point massm in the
potentialU(x) : U(x) = mgx for x > l(t) andU(x) = ∞ for x 6 l(t). The functionl(t)

is a real-valued function of timet .
The Schr̈odinger equation reads (m = 1, h̄ = 1)

i∂t9 = (− 1
2∂2

x + gx)9 (1)
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and physically acceptable solutions must obey the condition

∀t :

{
9(x, t) = 0 for x = l(t) and

∫ ∞

l(t)

|9(x, t)|2 dx = 1

}
. (2)

The Schr̈odinger equation (1) with the boundary conditions given in (2) has been studied in
a number of papers, (see the bibliography in [1]). It is well known that the simple change
of variable,x → y : y = x − l(t), transforms (1) to the following form:

i∂t9 = [− 1
2∂2

y + i l̇(t)∂y + gy + gl(t)]9 ≡ H(t)9 (3)

and the boundary condition now reads

∀t :

{
9(y, t) = 0 for y = 0 and

∫ ∞

0
|9(y, t)|2 dy = 1

}
. (4)

In (3) l̇(t) denotes the time derivative ofl(t). Below we will denote time derivatives—both
ordinary and partial—either by dots or by superscripts in parentheses. Thus, for example,
9(n) ≡ ∂n

t 9.

2. Exact solutions

Let us write (3) in the following form:

i∂t9 =
[ 4∑

n=1

αi(t)Hi

]
9 (5)

where

H1 = 1 H2 = y H3 = ∂2
y H4 = i∂y

and

α1 = gl(t) α2 = g α3 = − 1
2 α4 = l̇(t).

The operatorsHi, i = 1 . . . 4, generate a four-dimensional Lie algebraK with

[Hi, Hj ] =
4∑

k=1

ck
ijHk

where the non-zero structure constants arec4
23 = 2i, c1

24 = −i. This is a nilpotent algebra
with the property

[[[ K, K], K, ], K] = 0.

Now it is very tempting to take advantage of the formalism proposed by Wei and Norman
[2] and write the solution of (5) in the form

9(y, t) = U(t, 0)9(y, 0) (6)

where the unitary time evolution operatorU(t, 0) is given by

U(t, 0) = exp(β1H1) exp(β2H2) exp(β3H3) exp(β4H4). (7)

Substituting (6) into (5) and taking advantage of the linear independence ofHi one gets the
following differential equations for the unknown functionsβi(t):

iβ̇1 + β2β̇4 + iβ̇3β
2
2 = gl

iβ̇2 = g

iβ̇3 = − 1
2

iβ̇4 − 2β̇3β2 = l̇
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with the initial conditions

βi(0) = 0 for i = 1, . . . , 4.

The solution of this nonlinear system of equations is easily obtained and reads

β1 = −i

[
g

∫ t

0
l(t ′) dt ′ + g

∫ t

0
t ′ l̇(t ′) dt ′ + g2t3/6

]
β2 = −igt

β3 = it/2

β4 = −i[ l(t) − l(0) + gt2/2].

If the order ofHi in (7) is denoted by(1, 2, 3, 4) then there are three other distinct forms
of such factorized solutions. They have orders(1, 3, 2, 4), (1, 3, 4, 2) and (1, 4, 2, 3). The
corresponding functionsβi may also be calculated for each of these cases without any
problems. For our nilpotent algebra one may now make an effective use of the celebrated
Baker–Hausdorf formula, which in this case reads

exp(βiHi) exp(βjHj ) = exp(βiHi + βjHj + 1
2βiβj [Hi, Hj ] + Cij + Cji)

where

Cij = 1
12β

2
i βj [Hi, [Hi, Hj ]] .

Then all four of the distinct factorized forms of9(y, t) lead to the following solution:

9(y, t) = exp

( 4∑
i=1

γi(t)Hi

)
9(y, 0) (8)

where

γ1 = −i

[
g

∫ t

0
l(t ′) dt ′ + g

∫ t

0
t ′ l̇(t ′) dt ′ − igt/2(l(t) − l(0))

]
(9)

γ2 = −igt (10)

γ3 = it/2 (11)

γ4 = −i[ l(t) − l(0)]. (12)

The solution given in (8)–(12) can also be written in the following form

9(y, t) = exp

(
− i

∫ t

0
H(t ′) dt ′ + 1

2

∫ t

0

∫ t ′

0
[H(t ′′), H(t ′)] dt ′ dt ′′

)
9(y, 0)

which is known in the literature as the Magnus formula [3].
There are still other forms of9 which may be obtained from (8) via the Baker–Hausdorf

formula. We mention here the one which appeared in [4]:

9(y, t) = exp(δ1H1) exp(−iα2H2t − iα3H3t) exp(δ4H4)9(y, 0) (13)

where

δ1(t) = ig
∫ t

0
t ′l(t ′) dt ′

δ4(t) = −i[ l(t) − l(0)].

We will call the family of equivalent solutions described in this paragraph the Wei–Norman
solutions (WNS).
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3. The boundary conditions

For an arbitraryl(t) the above exact solutions of the time-dependent Schrödinger equation
(WNS) cannot fulfil the boundary conditions given in (4). In what follows it will
be demonstrated that the boundary conditions are in general not compatible with the
Schr̈odinger differential equation. If this is the case then theWNS cannot in fact fulfil
the boundary conditions.

Let us assume that the function9(y, t) possesses att = t0 time derivatives of all orders
and may be expanded in the Taylor power series int in an arbitrarily small vicinity0t0

of t = t0. Then the initial boundary condition9(y = 0, t0) = 0 will imply the equality
9(y = 0, t) = 0 for t ∈ 0t0 if

9(n)(y, t)|t=t0,y=0 = 0 n = 0, 1, 2, . . . . (14)

In order to simplify the calculations let us perform the gauge transformation that is frequently
used while dealing with the bouncer:

9(y, t) = exp(i l̇(t)H2)8(y, t).

The function8 fulfils the equation

i8̇ = H(t)8 (15)

with

H = (α1 − 1
2 l̇2)H1 + (α2 + l̈)H2 + α3H3 (16)

and must obey the boundary condition

∀t :

{
8(y, t) = 0 for y = 0 and

∫ ∞

0
|8(y, t)|2 dy = 1

}
.

It may easily be verified that

9(n)(y, t)|y=0 = 8(n)(y, t)|y=0.

The hierarchy of conditions given in (14) starts as follows:

80|y=0 = 0 (17)

8̇|t=t0,y=0 = (−iHt=t080)|y=0 = 0 (18)

8̈|t=t0,y=0 = ((−i)2H 2
t=t0

− iḢt=t0)80|y=0 = 0 (19)

8(3)|t=t0,y=0 = ((−i)3H 3
t=t0

+ (−i)2(2ḢH + HḢ)t=t0 − iḦt=t0)80|y=0 = 0 (20)

. . .

where80 = 8(y, t = t0).
It is seen from (16) that

H
(n)
t=t0 = [α2H2 + α3H3]δn0 + [(α1 − 1

2 l̇2)
(n)
t=t0]H1 + [l(n+2)

t=t0 ]H2.

Conditions given in (17)–(19) are fulfilled when80 is of the form

80(y) =
∑

n

cn2n(y) for y > 0 (21)

where

Ht=t02n(y) = 3n2n(y) 2n(0) = 0

3n are eigenvalues andcn constants. It is well known that a complete orthonormal set of
such functions2n exists (it is assumed in this consideration thatg + l̈t=t0 > 0) and

2n(y) = NnAi([2(g + l̈t=t0)]
1/3y + yn). (22)
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Ai is the Airy function, yn, are zeros of the Airy function, Ai(yn) = 0, and Nn are
normalization factors:∫ ∞

0
22

n(y) dy = 1.

The eigenvalues3n are as follows:

3n = (α1 − 1
2 l̇2)t=t0 − 2−1/3(g + l̈t=t0)

2/3yn.

The condition in (20) now looks as follows

8(3)|t=t0,y=0 = −α3l
(3)
t=t0H3H280|y=0 = −il(3)

t=t0H480|y=0.

Since in general d Ai(y)/dy|y=yn
6= 0, the vanishing of8(3)|t=t0,y=0 requires that

l
(3)
t=t0 = 0.

In general8(2+k)|t=t0,y=0 = 0 for k = 1, 2, . . . when l
(2+i)
t=t0 = 0 for i = 1, 2, . . . , k.

To sum up the above result: unless the functionl(t) has the propertyl(n)
t=t0 = 0 for n > 3,

solutions of the Schrödinger equation will not vanish aty = 0 for t ∈ 0t even if they did
vanish there fort = t0. Sincet0 is arbitrary, the vanishing of all derivatives of8 at y = 0
is possible only ifl(t) is a second-order polynomial.

Let us recall that the condition9(y, t)|y=0 = 0 is a necessary part of the boundary
conditions given in (4). Meanwhile exact solutions which were obtained above via the
Wei–Norman method as well as all their mutations,WNS, reached by the application of the
Baker–Hausdorf formula were valid for arbitraryl(t). Why is it then that they cannot fulfil
the boundary conditions? The reason is as follows. If one adds on the right-hand side of
(5) a potential-like termα5H5, whose role is to sweep the particle away from the negative
semi-axis ofy (e.g. α5H5 = V θ(−y), with θ(−y) being the step functionθ(−y) = 0
for y > 0, θ(−y) = 1 for y 6 0 andV is a constant; in the limitV → ∞ this term will
guarantee the vanishing of9 for y 6 0), then the algebra ofHi, i = 1, 2, . . . , 5, is not finite
any more and the method of Wei–Norman cannot produce in general an effective solution
of the equation. The casël = constant is an exception, however. Although adding the term
α5H5 to the operatorH in (15) (α5H5 survives the gauge transformation intact) results also
in an infinite algebra of time-indepedent operators, in the case whenl̈ is a constant we may
write the operatorH̄ = H + α5H5 as

H̄ = η1L1 + η2L2

where

L1 = H1 L2 = (α2 + l̈)H2 + α3H3 + α5H5

and

η1 = α1 − 1
2 l̇2 η2 = 1.

Since time-independent operatorsL1 andL2 form a two-dimensional nilpotent algebra, the
problem is in principle solvable. The limitV → ∞ may be legitimately replaced in this
case by the boundary conditions

∀t :

{
8(0, t) = 0 and

∫ ∞

0
|8(y, t)|2 dy = 1

}
imposed on the function

8(y, t) = exp

(
− i

∫ t

t0

H(t ′) dt ′
)

80(y).
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It is seen that when the function80 is taken in the form given in (21) the differential
equation (15) is compatible with the boundary conditions. One has

8(y, t) = exp

(
− i

∫ t

t0

(α1(t
′) − 1

2 l̇2(t ′)) dt ′
) ∑

cn exp(i2−1/3(g + l̈)2/3yn(t − t0))2n(y).

(23)

The operatorU(t, t0), i.e. the one which transforms9, has in this case the form

U(t, t0) = exp(i l̇(t)H2) exp

(
− i

∫ t

t0

H(t ′) dt ′
)

exp(−i l̇(t0)H2). (24)

When the functionl(t) is quadratic int , it is only a matter of tedious algebra to show that
the above operator reduces to the one given in (8). It is clear from the derivation of (23) that
the operatorU(t, t0) given in (24) must act on functions9(y, t0) = exp(i l̇(t0)H2)80(y).
(The casël = constant has been extensively treated in [5].)

Any solution of (3) which vanishes aty = 0 and is normalizable on the positive semi-
axis of y may always be expanded as

9 =
∑

bn(t)4n (25)

on the complete set of orthonormal eigenfunctions4n(y) of the time-independent operator

H0 = − 1
2∂2

y + gy = α3H3 + α2H2 (26)

H04n(y) = E0
n4n(y) 4n(0) = 0

∫ ∞

0
|4n(y)|2 dy = 1

and it follows from (22) that4n(y) = NnAi((2g)1/3y+yn). In practice9 given by (25) can
be obtained if the Schrödinger equation (3) is projected onto the basis4n and the resulting
set of differential equations solved for the functionsbn(t).

The fact that—whenl(t) is not a simple parabolic function oft—the WNS do not vanish
at y = 0 during the evolution is detectable when any of the above mentioned solutions
(WNS) is projected onto the basis4n. The resultingbWNS

n do not satisfy the set of equations
that must be satisfied by the expansion coefficientsbn of a correct solution (25). It must be
so because an expansion of a solution in the basis4n implies that the solution vanishes for
y 6 0 at all instants of time. This in turn means that there is in fact an infinite potential
acting on the negative semi-axis ofy. We remember that theWNS were obtained by omitting
this potential and therefore they cannot be legitimately expanded on such a basis during the
evolution. For the solution taken in the form given in (13) this fact was already proved in
[6].

4. Concluding remark

We believe that this paper throws some new light on the problem of solving Schrödinger
equations in cases when Hamiltonians are time-dependent operators and solutions must be
normalized in some subspace� of the configurational space. It was explained why in these
cases, when the Hamiltonian belongs to a finite nilpotent Lie algebra, the known methods
of obtaining closed form solutions which work perfectly well in the infinite configuration
space are not applicable in a subspace�. Basically, the same type of arguments may be
applied to a model of a particle in an infinitely deep potential well with a time-dependent
width (recent literature on this model may be found in [7]). In this case, when an infinite
potential is disregarded, relevant operators form a solvable algebra (not a nilpotent one) and
this is also enough for the Wei–Norman method to generate closed form solutions. Once
more, however, these solutions will not obey in general the required boundary conditions.
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